

L'intelligence artificielle à l'Inserm : Partenariats public-privé sur l'IA

Alfredo HERNANDEZ, DR Inserm

Responsable équipe SEPIA LTSI – INSERM U1099 / Université de Rennes

SEPIA Team - LTSI - INSERM U1099/Université de Rennes

Research context: Personalized diagnostics and treatments for cardio-respiratory pathologies

Multidisciplinary team with 14 permanent staff:

8 scientists with engineering background,

6 PUPH: 4 cardiologists, 2 neonatologists, 1 biologist

Longstanding translational research strategy (from methods to the patient):

Methodological contributions motivated by clinical problems:

Massive data processing, Mathematical Modeling, Machine Learning, Al

Technical innovations:

Development of prototype medical devices and systems

Pre-clinical and clinical research:

Evaluation of methods and devices

Strong experience on intellectual property development and tech-transfer:

30+ patent families registered (60+ individual patents)

24 patent families transferred to or co-registered with the industry

Creation of 2 startups

A key element to perform this translational research: the creation of « intelligent systems »

Definition of an "Al System" according to EU 'Al Act' Art 3(1)

"'AI system' means a machine-based system that is designed to operate with varying levels of autonomy and that may exhibit adaptiveness after deployment, and that, for explicit or implicit objectives, infers, from the input it receives, how to generate outputs such as predictions, content, recommendations, or decisions that can influence physical or virtual environments;"

Examples of AI Systems in our research

Clinical decission support systems

- Early detection Intelligent Alarms

- Support for therapy personalization

Fully-autonomous systems

Examples of AI Systems in our research

Choosing the best model/Al formalism

There is **no** "universal Al" that will optimally solve all problems

The choice of the **best algorithm or model** formalism, **for a given problem**, has significant consequences in terms of:

- Interpretability, explainability, model transparency
- Model validation methods
- ...

Journée de l'Inserm

Real-life acceptability and applicability of the system

Different AI models with different properties

Data-driven Problem-agnostic

Knowledge integration Interpretability - Explainability Knowledge-driven Problem-specific

Data Intensive

Black box models

Gray box models

Less Data Intensive

Sub-Symbolic AI - No feature extraction phase

Foundation models

Generative Al:

Generation of new content

(text, image, music,...) or data based on statistical

patterns it learns from existing data, mimicking

human-created content

Non interpretable

(Very) Limited interpretability

i.e. Deep Learning

Indirect interpretability

Symbolic AI (GOFAI)

Feature engineering

Knowledge-based models Digital twins

Direct Explainability

Physiological models

~ 1 - 10K paramètres

~600 Billion paramètres

© A. Hernández

Therapy personalization – Optimal cardiac stimulation

Novel digital markers of the cardiac electrical activity
Useful for the personalization of the stimulation therapy
Lightweight CNN that can be embedded into the device

Current and recent projects exploiting connectionist models

Light-weight (shallow) CNNs

Current/recent projects based on Deep Learning:

 PPP with a major company in the cardiac implant field: Medtronic (2020-2023)

- Projects with french startups: i.e. SentinHealth (EIT Health)
- Purely academic: PEPR Santé Numérique « DIIP Heart »

Different Al models with different properties

Data-driven Problem-agnostic

Knowledge integration Interpretability - Explainability Knowledge-driven Problem-specific

Data Intensive

Black box models

Gray box models

Less Data Intensive

Sub-Symbolic AI - No feature extraction phase

Symbolic AI (GOFAI) Feature engineering

Knowledge-based models Digital twins

Foundation models

Non interpretable

Generative Al:

Generation of new content

(text, image, music,...) or data based on statistical

patterns it learns from

existing data, mimicking human-created content

(Very) Limited interpretability

i.e. Deep Learning

Indirect interpretability

Direct Explainability

Physiological models

10

© A. Hernández

Inserm Journée de l'Inserm 17/03/2025

Fully-explainable AI based on digital twins

Time [s]

Hernández et al. Model-based interpretation of cardiac beats. Artif. Int. Medicine. 2001

- Creation of a set of multiresoultion cardiovascular models
- Explicit representation of anatomical and physiological functions
- Generation of realistic signals with its explanation
- Model personalization -> Digital Twins
- Virtual populations

Therapy personalization through fully-explainable Al

Original modelbased reasoning methods

- Sensitivity analyses
- Patient-specific model parameter identification
- Digital Twins and generation of "virtual populations"

"Grey-box" or "transparent" methods (Explainable AI - XAI)
Explicit representation of the complex **electro-mechanical** interactions

Therapy personalization through fully-explainable Al

1 patent family:

US20090209875

Clinical evaluation

[Europace 2011] [IEEE TBME 2014].

Transferred to Sorin CRM

New digital markers of the electro-mechanical cardiac function for therapy personalization.

Current projects exploiting AI and Digital Twins

ANR-DGOS « Expert » (2023-2026):

Prospective inference evaluation of model-based methods for the prediction of CRT response

7 patent families all delivered in EU, WO, US16 main publicationsWinners of BPI iLab 2024

Different Al models with different properties

Problem-agnostic

Knowledge integration Interpretability - Explainability

Problem-specific

Data Intensive

Black box models

Gray box models

Less Data Intensive

Sub-Symbolic AI - No feature extraction phase

Foundation models

Non interpretable

Generative Al: Generation of new content

(text, image, music,...) or data based on statistical patterns it learns from existing data, mimicking human-created content

Journée de l'Inserm

(Very) Limited interpretability

i.e. Deep Learning

Symbolic AI (GOFAI) Feature engineering

Indirect interpretability

Knowledge-based models Digital twins

Direct Explainability

Physiological models

15

© A. Hernández

Intelligent monitoring of preterm newborns

16

Objective: Early detection of risk events (i.e. apnea-bradycardia)

French National PHRC "Caress-Premi" EU Project H2020 "DigiNewB" (2017 - 2022)

Multicenter, massive data acquisition:

- Signal monitoring 24/7 (mean duration = 3 weeks)
- >400 patients, >3500 upload sessions, ~2 M files
- Equivalent of > 25 years of continuous signals.
- Annotations of the main clinical events

Intelligent monitoring of preterm newborns

EU H2020 (2017 - 2022)

1.3E9 ECG samples. ~5M heartbeats.

Intelligent monitoring of preterm newborns

EU H2020 (2017 - 2022)

18

Beat-to-beat interpretable feature extraction

Current projects based on Signal Processing and Al

XENIAH Project (2022-2025):

Explainable, on-the-edge application of intelligent monitoring systems

https://pasithea.health/

8 patent families all delivered in EU, WO, US

9 main publications

Created in January 2023

Initial seed funding raised with NLC venture studio.

BPI FTE in 2023

Different models with different properties

Problem-agnostic

Knowledge integration Interpretability - Explainability

Problem-specific

Data Intensive

Black box models

Gray box models

Less Data Intensive

Sub-Symbolic AI - No feature extraction phase

Foundation models

Non interpretable

Generative Al:

Generation of new content

(text, image, music,...) or data based on statistical

patterns it learns from

existing data, mimicking human-created content

(Very) Limited interpretability

i.e. Deep Learning

Symbolic AI (GOFAI) Feature engineering

Indirect interpretability

Hybrid AI methods

Digital twins

Knowledge-based models

Direct Explainability

20

Inserm

Journée de l'Inserm 17/03/2025

© A. Hernández

Physiological models

Current projects based on Hybrid AI methods

EU Horizon RIA 2023-27

Objective: Stratification, Management and Guidance of Hypertrophic Cardiomyopathy Patients using **Hybrid Digital Twin Solutions**

Industrial partners: Medtronic, InSilicoTrials, Pharmatics

MedAl®: predictive software integrated via an API for Pharma and MedTech

Conclusions

- Inserm has a valuable, longstanding, recognized know-how and experience on Al in healthcare, leading to real-life clinical applications.
- A huge added value in the field
 - Multidisciplinary expertise
 - Continuum from basic research to (pre)clinical evaluation
 - Multiscale and multisource databases novel clinical trials
- Collaborative research (public and public + private) is a key transformer in this complex domain
- Reaching maturity of the tech transfer ecosystem
 - Win-win projects with the private sector and creation of startups.
- Future is plenty of opportunities ... but also, of challenges to cope with:
 - Attracting highly-trained staff in all concerned disciplines.
 - Further improve our innovation ecosystem synergies with all involved actors.
 - Infrastructure

22

Merci!

A. I. Hernández Research Director INSERM alfredo.hernandez@inserm.fr

LTSI - INSERM U1099. Université de Rennes 1. Rennes, France.

www.ltsi.univ-rennes1.fr

23